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Abstract. The explicit droplet theory of low-dimensional phase transitions, developed 
recently, is extended to yield a description of the pair correlation function for the universality 
class of q-state Potts models in the ordered phase and in zero external field. It is shown 
that, in d = 1 + E  dimensions, the short distance behaviour of the correlation function and, 
in particular, the exponent 7, are controlled by nested nearly spherical droplets. In contrast, 
it is argued that the spatial dependence of the large distance behaviour, in d = 2 or above, 
is controlled by highly anisotropic droplets, thus illuminating the Widom relation, utd-’ = 
constant, linking the dimensionless surface tension U and the bulk correlation length 6. 
In the particular case of d = 2 the statistical weight of the relevant droplets is determined 
as that of two appropriately interacting strings, in the spirit of recent, independent, 
arguments by Abraham and by Fisher: a non-Omstein-Zernike correlation function prefac- 
tor, and the result ut = f follow in accord with exact results for the q = 2 (Ising) case, and 
with implications for the q + 1 (percolation) problem. 

1. Introduction 

In a recent paper (Bruce and Wallace 1983, hereafter referred to as I) it was shown 
how the droplet phenomenology of phase transitions (Fisher 1967 and references 
therein) can be realised in an explicit theory of Ising systems in d = 1 + E  space 
dimensions. This work has subsequently been extended to include the effects of an 
ordering field (Sim and Bruce 1984) and generalised to the q-state Potts universality 
class (Schmittmann 1982, Schmittmann and Bruce 1984) which incorporates the Ising 
( q  = 2) and percolation ( q  + 1) problems as special cases. 

The present work extends this programme beyond strictly thermodynamic properties 
to the behaviour of the pair correlation function. In contrast with the bulk of our 
previous work, the present study leads to some general conclusions and specific results 
whose validity is not restricted by the d = ( 1  +&)-dimensional approximation inherent 
in the framework of our original droplet theory. Nevertheless, since other features of 
the present study are again subject to this restriction, we shall develop our arguments 
within the original framework, the elements of which it is thus appropriate to summarise 
at this juncture. 

The foundation stone of the theory is the calculation of the statistical weight for 
an isolated droplet of one phase embedded in a background of a different phase, in 
a system of q-coexisting phases (i.e. a member of the Potts universality class, on its 
coexistence curve). It was established in I that this single droplet partition function 
is dominated, for d near 1, by droplets whose shape fluctuations (deviations from 
spherical) are controllably small, and whose typical linear dimension, or ‘scale size’, 
R, is statistically bounded above by a characteristic length 6, which prescribes the 
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surface tension u (the free energy per unit interfacial area, expressed in units of k T )  
through a relationship of the form 

&’ = (1.1) 

where co is a constant. As a critical temperature T, is approached from below, the 
length 6 exhibits a power law divergence with a critical index v (whose inverse has a 
calculable expansion in E = d - l ) ,  the interfacial free energy vanishes with critical 
index p = ( d  - 1)v ,  and the typical droplet scale size diverges. To demonstrate, and 
to characterise, the implied phase transition (vanishing of long range order) one has 
to go beyond the isolated droplet theory, and develop a description of a many-droplet 
assembly, recognising in particular that droplets of one phase may invariably house 
droplets of the other q - 1 phases. Again we showed that this problem of droplet nesting 
can be handled near d = 1 where droplet boundaries remain controllably dilute even 
at the critical point. The order parameter of the many-droplet assembly was calculated 
and found to vanish with a power law; the associated exponent p was found to be 
related simply ( p  = qG0v) to a universal parameter Go prescribed by the form of the 
single-droplet partition function associated with droplets having scale sizes small 
compared to 6. 

The study of the pair correlation function which we present here may most helpfully 
be subdivided into two parts, which have rather different motivation, offer different 
insights, and yield results with different domains of validity. 

Firstly ( 5  2) we will examine the behaviour of the correlation function at distances 
small compared with 5. The motivation here is simply that of completeness: the analysis 
permits us to identify the remaining fundamental (zero-field) exponent 7). The calcula- 
tion is straightforward: the short distance behaviour is controlled by dilutely nested 
almost spherical droplets so that the requisite configurational average can be determined 
by a simple extension of the arguments developed in I. The domain of validity of the 
argument is, like that of the analysis in I, restricted formally to d = 1 + E  dimensions. 

The second and more substantial portion of this work is concerned with the 
behaviour of the correlation function at distances large compared with 6. The motiva- 
tion here is rather more compelling: it is to establish the relationship between the 
length 5, which characterises the critical properties of the interfacial free energy 
(equation (1.1))  and the true bulk correlation length defining (or defined by) the rate 
of exponential fall-off which the correlation function is expected to display at large 
distances. It is generally anticipated that these two lengths will display the same critical 
behaviour (see e.g. Widom 1972). Indeed this, expectation has been built pre- 
sumptuously into our use of the conventional correlation length and exponent symbols, 
6 and U, for the ‘interfacial length’ and its critical index. Nevertheless it seems 
worthwhile to try to justify this presumed equivalence, and to explore its physical 
origins. This task, addressed in § 3, proves rather more demanding than the first. The 
difficulty originates in the fact that, in contrast with the thermodynamic properties, 
considered in I, the large distance behaviour of the correlation function cannot be 
extracted from a perturbation theory about the spherical droplet limit. Specifically, 
we shall argue ( 5  3.2) that the spatial-dependence of the correlation function for two 
points separated by a distance r > > (  reflects the r-dependence of the probability of 
finding a droplet embracing both points. This conclusion emerges within the framework 
of our basic droplet model; however it seems likely that its validity transcends the 
low-dimensional approximation. With this in mind we observe that a spherical droplet 
fulfilling the two-site overlap constraint will have a surface area of the order of at least 
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,.d-l. , on the other hand the two-site overlap condition may be fulfilled by a highly 
anisotropic droplet with only one linear dimension of order r, and the others ‘small’ 
compared to r (in fact, typically of the order of (, although the d = 2 case is exceptional 
in this regard), Evidently, then, for space dimensions d > 2 ,  and indeed for d = 2, the 
surface energy cost of the anisotropic droplets is small compared to that of the nearly 
spherical droplets and the former should therefore dominate the large distance ( r  >> 5) 
behaviour of the correlation function. In fact ( §  3.1) we shall see that, at least in 
d = 1 + E  dimensions, the effect of nearly spherical droplets is simply to produce the 
(-dependent (but r-independent) prefactor in the correlation function, with the form 
appropriate for a correctly scaling theory. To capture the r-dependence of the correla- 
tion function one must carefully tailor the analysis according to the (integral!) space 
dimension of interest. In this paper we shall be predominantly concerned with the 
large distance behaviour in d = 2. In this case the relevant anisotropic droplets may 
be constructed from two strings with (fluctuationless) length r, tied together by two 
further strings with lengths of the order of 6. This picture is essentially that envisaged 
in recent independent studies by Abraham (1983) and Fisher (1984) and the key results 
we shall obtain in this context are already apparent in these two papers. Specifically 
we shall see (0 3.3) that the string-based theory accounts for the non-Ornstein-Zernike 
(rP2) form of prefactor long known to characterise the ordered phase of the d = 2, 
q = 2 (Ising) lattice model. We shall also see that equation ( 1  . l )  is indeed satisfied in 
d = 2  with ( the bulk correlation length, and with the constant co assigned the value 
co = 2, so that 

U ( = ;  ( 1.2) 

which is, once again, a result that is known to hold exactly for the d = 2 Ising model. 
Although these results are, then, in no sense new, the present exercise has some 

potentially informative features. Firstly, since it is technically different from the 
analyses of Abraham (1983) and Fisher (1984), its success serves to confirm that the 
‘understanding’ of the aforementioned results afforded by the string picture is not 
illusory. Secondly, the methods developed and shown to work successfully here are 
potentially applicable to the large distance behaviour of the d = 3 ordered phase 
correlation function, whose prefactor structure is not known. Thirdly we shall argue 
that the two key features of the d = 2 correlation function identified above may well 
be characteristic not just of the Ising problem but, more generally, of the q-state Potts 
universality class (or, at least those members of this class which exhibit continuous 
phase transitions). In particular, in the q +  1 limit which describes the percolation 
problem (Fortuin and Kasteleyn 1972) the relationship (1.2) prescribes a definite link 
between the pair connectedness length and the length which controls the exponential 
decay of the cluster number distribution. These remarks are amplified in our concluding 
and summarising section. 

2. The short distance behaviour of the correlation function 

2.1. The configuration-generating procedure 

In I we devised a procedure by which one may generate a representation of the 
canonical ensemble of configurations in an Ising system, in d = 1 + E  dimensions. This 
procedure was subsequently extended to the Potts universality class (Schmittmann 



3366 A D Bruce 

1982). We begin our analysis by recalling this procedure, in outline only; the reader 
is referred to I for a fuller exposition and to subsequent papers (Sim and Bruce 1984, 
Schmittmann and Bruce 1984) where the procedure is developed in a more explicit 
and rather more conventional renormalisation group format. 

The method rests on the key result of I, expressing the partition function for a- 
single droplet of one phase embedded in a volume V of a different phase (equation I, 4.1) 

Z1 = V dRu-I(R)$(R, 6 )  I 
where U( R )  = d- 'SdRd is the volume of a sphere of radius R and +( R, 6 )  is a function 
with the following properties 

(2.2a) 

(2.2b) 

(2.2c) 

The universal parameter Go is defined in equation (I, 4.4d). The critical length .$ is 
defined in equation (I ,  3.28b). Within the context of the theory this length effectively 
parameterises the surface tension. Thus the argument of the exponential in ( 2 . 2 ~ )  is 
recognisable (given equation (1.1)) as the interfacial free energy of a spherical droplet 
of radius R. We shall subsequently see that, with appropriate identification of the 
parameter co (which is not prescribed by the arguments of I), the critical length 6 does 
indeed coincide with the true bulk correlation length. 

In P 5.2 of I it was shown that the function $(R, 6 )  dR has a simple physical 
interpretation: it represents the mean fraction of the available space of one phase 
occupied by droplets ot' another phase, having scale sizes in the range R to R +dR. 
This assertion is embodied and refined in the procedure by which, it was argued, one 
may generate an approximate representation of the configurations in a q-phase 
assembly, allowing for the two complementary effects of excluded volume and droplet 
nesting. Specifically we decorate an ensemble of macroscopically-sized samples of 
one particular phase with successively smaller droplets of all q phases; at each stage 
of this differential dressing procedure we use droplets of each phase and of the scale 
size R + R +dR then appropriate, in such numbers as to cover a mean fraction 
$( R, 6 )  dR of the existing available space (i.e. the space occupied by the other phases); 
the dressing procedure, which is realised in the form of appropriate differential 
equations, is terminated when the decorating-droplet scale size reaches some arbitrary 
minimum length Lo. The latter coordinate, and the scale of the ordering coordinate 
together define the two basic non-universal scales appearing in any strong scaling 
theory; modulo these two scales the observables calculated by appropriate averages 
over the prescribed ensemble should display the universal characteristics of the class 
of q-state Potts systems. 

2.2. Application to the correlation function 

Consider an assembly decorated in the fashion described above with droplets of q 
phases, of scale sizes larger than Lo, and characterised by a particular critical length 
scale 5, effectively defining the assembly temperature. Of the q-phases let phase 1 be 
that which is thermodynamically favoured (by the boundary conditions realised in our 
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framework through the choice of the phase of the undecorated assembly). We define 
an order parameter Q for the assembly by 

Q(Lo,5)  = q ( 4  - 1)-I{P,(Lo9 5) - 4 - 7  (2.3) 

where pI ( Lo, 5) is the probability that a point in the assembly lies in phase 1. In the 
same fashion we define a pair correlation function g by 

g ( r ;  Lo, 5) = d q  - l)-I{Ps(r; Lo, 5) - 4- l )  (2.4) 

where p s ( r ;  Lo, 5) is the probability that two points separated by distance r lie in the 
same phase. With these conventions it is easily seen that 

lim g ( r ;  Lo, 5) = Q2(Lo, 5) 
r / 5 + m  

so that the appropriate connected pair correlation function is simply 

Now, in the spirit of the arguments of I, we set up a differential equation describing 
the manner in which the probability p s  evolves as one changes the inner length scale 
from Lo to Lo - IdLol by decorating the assembly with droplets whose scale size lies in 
this infinitesimally narrow range. In so doing we shall restrict ourselves to the regime 
in which the dressing droplet size Lo is small enough compared to the site separation 
r that droplets of this scale size have negligible probability of overlapping both sites. 
Then one readily sees that 

The first term in the parentheses represents the effects of those configurations in which 
one of the two locations (separated by r )  initially occupying the same phase is 
subsequently covered by one of q - 1 types of dressing droplet; the second term 
represents the effects of configurations in which one or other of two locations initially 
occupying diferent phases is subsequently covered by a dressing droplet of the phase 
in which the other site is embedded. Combining equations (2.4) and (2.7) we find 
immediately that the pair correlation function satisfies the differential equation 

On the other hand we may recall from our earlier studies (or recover directly from 
(2.3)) that the order parameter satisfies the differential equation 

Combining equations (2.8a), (2.86) and (2.6), and integrating the resulting equation 
for the connected correlation function we find 

where, for consistency (cf our neglect of two site overlap) we require that our 'matching' 
length Lm must be small compared to the site separation r. Choosing L, = ar,  with 
Q << 1, assuming that r is small compared to 5 and invoking the small R / 5  behaviour 
of the function (1, (equations (2.24 b)) we find 

$ ( r ;  Lo, 5) = D(a)(Lo/ra)2q'o  (2.10a) 
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with 

D( a )  = lim g*( r ;  cur, 6). 
c-.* 

(2.1 Ob) 

On dimensional grounds it is clear that this amplitude is independent of r ;  consistency 
requires that it should depend upon a in such a way as to cancel the explicit 
a-dependence in (2 .10~) .  Thus we conclude that 

(2.11u) g ( r ;  L ~ ,  6) = D(Lo/r)d-2+rl 

with D = D( 1) and 

7 = 2,- d +2qt,!10 = 2 - d + 2/31 v (2.1 1 b )  

in accord with strong scaling. 

3. The large distance behaviour of the correlation function 

3.1. General scaling theory 

We begin by returning to equation (2.9). This result is valid as long as the matching 
length L, is small compared with r. In the regime r >> 6, with which the remainder of 
this paper is concerned, we may satisfy the former constraint ( L ,  << r )  with a matching 
length which is nevertheless large compared to the correlation length ( L ,  >> 6). Let us 
consider the implications of this choice for the correlation function i (  r ;  L,, 6) which 
appears on the RHS of equation (2.9). This function describes the correlations in an 
assembly from which all droplets of scale sizes R < L ,  have been erased. The choice 
L, >> 6 then effectively ensures that this assembly is non-critical; more precisely it implies 
that those droplets which may appear in the assembly will do so with such small 
probability that their nesting and excluded volume may be neglected, thus realising 
the situation envisaged in the original droplet model (Fisher 1967). In effect the 
argument leading to equation (2.9) fulfils the central aim of any renormalisation group 
analysis (and such, indeed, it is) of relating the intractable physics of a near-critical 
assembly to the hopefully simple properties of an assembly far from criticality. 

Exploiting the simplicity of the dilute limit we may now write 

P l ( L , t ) z  l - ( q - l ) ~ c ( L m , 6 )  (3 . la )  

where pc(L,, 6) is the probability that a particular site is covered by some droplet of 
a particular one of the q - 1 unfavoured phases. Furthermore 

~ s ( r ;  L, ,6)=1-2(q- l )p , (Lm,6)+2(q- l )Pb(r ;  L m , 6 )  (3 . lb)  

where pb(r ;  L,, 6) is the probability that the two sites are both covered by the same 
droplet of a particular one of the q - 1 unfavoured phases. Combining equations (2.3), 
(2.4), (2.6) and (3 .1)  we find 

g ( r ;  Lm, 6)z2qpb(r; Lm,  6) 
whence, from equation (2.9), we obtain 

(3.2) 

(3.3) 

The argument is completed by two further observations. Firstly, given the condition 
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L, >> 6 (which we have chosen to fulfil), the exponential on the RHS of equation (3 .3)  
is asymptotically independent of L, and is recognisable (cf equation ( 2 . 8 b ) )  as the 
square of the bulk order parameter: 

( 3 . 4 ~ )  

Secondly, given the condition r >> L, (which we have also chosen to fulfil), the 
probability pb should clearly (both on intrinsic physical grounds, and for the sake of 
the L,-independence of the RHS of equation ( 3 . 3 ) )  be independent of L, and thus 
be a scaling function of the ratio r / 5 :  

(3 .4b )  p b ( r ;  Lm, 6) == bb(  r /  6) r >> L,. 

Combining these results we find 

a r ;  Lo, 5 )  =2qQ2(Lo, 5 ) b d r l 5 )  r >> 5 ( 3 . 5 ~ )  

which has the anticipated scaling structure 

a r ;  Lo, 5 )  = 5 - 2 P ’ ” i ( r / o .  (3 .5b )  

Equation ( 3 . 5 ~ )  is the key result of this paper. It has implications for the r- 
dependence, the &dependence and the q-dependence of the two-point correlation 
function at large distances. We defer discussion of the 6- and q-dependence to 0 4. 
Here we shall be primarily concerned with the implied spatial dependence which, 
according to equation ( 3 . 5 a ) ,  should be controlled by the spatial-dependence of the 
probability of finding a closed interface (droplet) embracing the two points. We have 
of course established this result only within the dilute droplet boundary approximation 
justifiable formally in d = 1 + E  dimensions. However we shall proceed on the assump- 
tion that its domain of validity is actually not restricted to dimensions d ‘close’ to 1. 
By the time we return to consider this assumption, in § 4, we shall have accumulated 
considerable circumstantial evidence to support it. 

3.2. The two-site overlap probability; general remarks 

Before attempting to evaluate the two-site overlap probability it is essential to identify 
the qualitative character of the droplet configurations which control its behaviour. 
Given the prevailing philosophy of our basic droplet theory one might naturally look 
first to the contribution made by nearly spherical droplets of scale size R > f r .  One 
immediately discovers, however, that the interfacial free energy cost of such droplets 
will ensure that their statistical weight will fall off with r as 

(3 .6 )  ex p[ - asd ( r /  2 ) -‘I - ex p[ - ( S, / co) ( r / 2 6) - ’ 1 
where we have anticipated the relationship (1.1).  For d > 2 the spatial dependence of 
(3 .6)  is unambigously different from the anticipated simple exponential behaviour. In 
contrast to suggestions by Reatto and Rastelli (1972) and Stauffer (1978) the author 
does not believe that this difficulty can be circumvented by invoking the finite interfacial 
thickness of droplet boundaries, realised within our framework as fluctuation-induced 
distortions about the spherical limit. Instead we note that, whereas one linear dimension 
of the relevant droplets must exceed r, the others need not. Consider then the interfacial 
free energy cost of an anisotropic droplet formed from a cylinder of length r and 
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radius R.  This free energy will be of the order of ueffRd-’r  where aeff is an effective 
surface tension. In the limit in which r and R are both large compared to 5 it is clear 
that ueff should coincide with the macroscopic surface tension U. Allowing for arbitrary 
R values, but taking r >> 5, consistent withaur basic premise, one may anticipate that 
ueR will be independent of r and thus, on dimensional grounds, should have the 
crossover scaling form. 

aeff(R, 5) = R - “ ” G ( R / ( )  (3.7a) 

where 

(3.7b) 

The free energy cost of the droplet considered is then of the form 

u , , R ~ - ~ ~ =  ( r / 5 )  ( 5 / R ) G ( R / 5 ) .  (3.8) 

Inspection of (3.8) shows, then, that provided the ‘constant’ appearing in (3.76) is 
non-zero the free energy cost of such droplets will be minimal for R values of the 
order of 5 and will have the order of magnitude 

a e f f R d - ’ r -  r l t .  (3.9) 

This is, in fact, the result one obtains if one boldly utilises the macroscopic surface 
tension, together with the Widom relation ( l e \ ) ,  to estimate the free energy of ‘cylin- 
drical’ droplets of radius - 5. The fact that the spatial dependence it implies for the 
correlation function coincides with the anticipated simple exponential form may, then, 
according to one’s point of view, be taken either as an alternative argument for the 
Widom relationship, or as a vindication of the conjecture that such highly anisotropic 
droplets do indeed dominate the large distance behaviour of the ordered phase 
correlation function in d > 2.  (The d = 2 case is actually somewhat special, as we shall 
see.) 

In the light of these arguments it is clear that the problem of the ordered phase 
correlation function can certainly not reasonably be tackled with perturbative 
expansions about the spherical droplet limit-at least, not in any space dimensions of 
physical interest. Rather one must tailor the analysis in such a way that any approxima- 
tions made concerning fluctuations are acceptable, specifically, for those (highly 
anisotropic) configurations which one expects to be dominant. In the rest of this paper 
we proceed to examine the d = 2 case in some detail. In so doing we relinquish the 
formally firm but practically restrictive foundation for the argument leading to equation 
(3.52). Nevertheless we shall accumulate at the very least pragmatic justification for 
our faith in the more general validity of this result, and in so doing provide motivation 
for studying its consequences for the three-dimensional problem. 

3.3. The two-site overlap probability in d = 2 

3.3.1. The two-string picture: the surface tension and the correlation length. The behaviour 
of the correlation function in the ordered phase of the d = 2 ,  q = 2 (Ising) universality 
class is now both well established and well understood. Firstly there exist exact 
calculations for the nearest-neighbour lattice Ising model (Wu 1966, McCoy and Wu 
1973). Secondly, in papers received during the course of the studies reported here, 
Abraham (1983) and Fisher (1984) have shown that the essential features of the large 
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distance behaviour displayed by the exact results can indeed be understood in terms 
of the properties of highly anisotropic droplets. This perspective is developed here 
using methods which, it is ,hoped, are complementary to those deployed in the above 
noted papers and which offer the possibility of tackling the d = 3 problem. 

In d = 2 the argument developed in the preceding section requires a little modifica- 
tion and can, in fact, be reformulated in a more powerfully predictive form. Certainly 
one may still anticipate that the relevant droplets will be highly anisotropic, having 
‘lengths’ (of order r )  large compared to their ‘widths’. However, by comparison with 
the d > 2 situation the transverse dimension (at points intermediate between the two 
sites) affects the interfacial energy cost only weakly, as long as it is small compared 
to r, and the interfaces will thus wander more widely. This entropy-driven wandering 
will be limited by the requirement that the interfaces do not cross, and by the interfacial 
energy cost of the droplet ‘ends’ (which would appear to have a negligible role in 
higher dimensions). These considerations suggest that the typical contributing configur- 
ation will have the form suggested schematically in figure ( 1  a ) .  This picture embodies 
the essential ingredients of the arguments of Abraham (1983) and Fisher (1984). The 
typical relevant droplet may be regarded as being constructed from two strings of 
fluctuationless (minimal) length r. The constraint that the two strings should pass 
through the two points in question (imposed in the aforementioned papers) is not 
strictly jutifiable and, more generally, one can regard the two r-lengthed strings as 
being joined at each end by two further strings, in the manner suggested in figure ( 1  b ) .  
It is clear, both from the perspectives of general scaling theory, and from the more 
specific implications of equation ( l . l ) ,  that the end strings will have lengths of the 
order of 6. 

Figure 1. ( a )  Schematic representation of a droplet contributing to the two point function 
at distance r >> 6 in the ordered phase in two dimensions. ( b )  The four-string representation 
of a contributing droplet, analysed in the text. 

That the gross features of this picture are correct is made clear by its capacity to 
predict (and in the process illuminate) the relationship between the surface tension 
and the correlation length, known to hold for the d = 2 Ising model. Specifically, we 
see that the interfacial free energy cost of the anisotropic droplets in question will (for 
r large compared to 6) approach 2ar .  The associated statistical weight of such 
configurations will thus fall off, with r, as e-2ur (to within pre-exponential factors to 
be considered shortly). With the perspectives of equation (3.5a), this exponential 
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dependence must match that of the pair correlation function itself, so that 

e-2ur  - e - r / 5  (3.10) 

from which one immediately infers equation (1.2). The Widom relation (1.1) is thus 
vindicated and the universal constant co appropriate for d = 2 is identified as co = 2. 
Alternatively, approaching the problem from the perspectives of our original droplet 
theory, one may assert that the ‘critical length scale’ which parameterises the surface 
tension in the manner indicated by equation ( 2 . 2 ~ )  may be brought into coincidence 
with the bulk correlation length by the choice co = 2. (Strictly, to complete this argument 
one must show that the surface tension inferred from the statistical weight of large 
spherical droplets, equation (2.2c), is the same as that characterising a planar interface. 
This has indeed been checked through studies of the planar interface using the same 
form of dimensionally-regularised renormalisation group arguments as utilised in the 
study of nearly spherical droplets in d = 1 + E .  The details will not be given here.) 

Gratifyingly, as pointed out by Fisher (1984) equation (1.2) actually expresses an 
exact result for the ordered phase of the d = 2 lattice Ising model (holding even when 
the surface tension and correlation length are anisotropic quantities). Within the 
framework made plausible by the arguments of § 3.1, we conjecture that this result 
should in fact hold for the class of q-state Potts systems (cf further discussion in § 4). 
For the present, however, we proceed to put the picture advanced in figure 1 ( a )  to a 
more stringent test by exploring its implications for the subdominant r-dependent 
prefactor of the correlation function. 

3.3.2. The single-string partitionfunction. It will prove helpful to preface the calculation 
of the statistical weight of the (essentially) two-string configurations depicted in figure 
1 ( a )  with an analysis of a ‘single-string’ problem, along the lines of an argument given 
by Stack and Stone (1981). 

Consider a string of minimal (fluctuationless) length r fixed at each end, but 
otherwise free to fluctuate into the d - 1 dimensions orthogonal to its length. The 
actual length of any configuration may be written in the form 

(3.1 1 )  

where f”(x) is the a t h  component of the ( d  - 1)-dimensional vector f (x )  giving the 
transverse displacement (from the fluctuationless state) of the string at point x. We 
associate with the spectrum of single-string configurations a statistical weight 

(3.12) 

where a, represents a bare string tension. This equation is meaningful only once we 
have assigned a precise significance to the functional integral. We shall make the 
Fourier decomposition 

with 

N = r /ao  (3.13 b )  
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and adopt the convention 

(3.14) 

These assignments are consistent with (and motivated by) the discretised (lattice) form 
of (3.12) considered in appendix 2. They are not unique: the results we shall obtain 
are thus trustworthy only to the extent that they are independent of the details of this 
choice. 

Proceeding with this in mind we expand the configurational length (3.11) in powers 
of .f, and utilise the representations (3.13a, b) to find 

a 3 7 T 2  N-l  

Z l s ( r ) = l  %ldb(n)exp(  n = = l  -uor-- 0 0  2r2 n2b2(n)+O(b4)) 

= exp( - uor -- ( d  - 1)  y n'uo;h)) 
2 n = i  2r 

To the requisite accuracy we find for the remaining sum 

whence 

(3.15) 

(3.16) 

The last step requires some elaboration. Firstly, we have identified the terms in the 
coefficient of r in the exponential as contributions to the fluctuation-renormalisation 
of the bare string tension. The naive perturbation theory in (uoao)-' does not now 
allow us to control these fluctuation effects in a systematic way. However these effects 
are not now the focus of concern since they ultimately serve only to determine the 
critical behaviour of the interfacial tension of our (d  = 2) anisotropic droplets, and 
thence the coefficient of r in the dominant exponential factor in the correlation function, 
discussed in the preceding section. Secondly, we have subsumed into an unspecified 
prefactor z those logarithmic terms in the exponential which do not involve r (either 
as a coefficient or as an argument). The specific form of this prefactor emerging from 
the present calculation is not trustworthy in as much as it depends upon the details 
of the way in which the Fourier sum ( 3 . 1 3 ~ )  is truncated. Indeed one might feel that 
the prefactor is inherently ill defined given the ambiguity associated with the choice 
of measure (3.14). In fact it seems likely that the prefactor can be assigned an absolute 
significance, just as (cf I) it appears that there is an absolute measure for the partition 
function of isolated droplets. We shall not, however, explore this problem here since 
the present exercise is designed to capture and illuminate the r-dependence (rather 
than the [-dependence) of the correlation function prefactor. To that end we note 
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now the power of r which appears in the prefactor of (3.17) and which can be traced 
to the coefficient of the logarithm of r in the regularised sum (3.16). This power is, 
we believe, trustworthy, since it is quite insensitive to the specific way in which the 
Fourier sum ( 3 . 1 3 ~ )  is truncated, and since higher-order terms in the perturbation 
theory do not appear to generate additional logarithmic factors. The particular form 
of r-dependent prefactor structure implied by equation (3.17) is recognisable as that 
of the Ornstein-Zernike prefactor of the disordered phase correlation function, as 
pointed out by Stack and Stone (1981). This correspondence is immediately intelligible 
in the light of the graphical representation of high-temperature series expansions for 
the two-point correlation function which takes the form of a sum over self-avoiding 
strings of bonds running between the two points (Fisher and Burford 1967). The 
coincidence of the two results suggests that the prefactor structure is not influenced 
by the string overhangs and separate closed strings present in the series expansion 
formalism, but not contained in the configurational sum (3.12). 

3.3.3. The two-string partition function, and the correlation function prefactor. We now 
turn to the two-string problem. Rather than confront directly the spectrum of configur- 
ations indicated in figure l (b )  we shall consider in the first instance a slightly simpler 
situation: two strings are pinned at each end a distance y apart, but are otherwise free 
to fluctuate in a two-dimensional space; we suppose that the strings experience a short- 
range repulsive interaction V, which suppresses string crossing (and may eliminate it 
althogether if taken to the infinite strength limit). We write the associated configur- 
ational weight in the form 

(3.18) 

where f, and f2 denote the displacement fields of the strings from their minimum length 
configurations. Expanding the configurational lengths in powers of the fields to leading 
order, and replacing the two field variables by centre of mass and relative separation 
coordinates we find that 

( 3 . 1 9 ~ )  22s(r, Y )  = Gs(r)z2R(r,  y’) 
where 

(3.19b) 

The single-string configurational weight appearing in equation (3.194 originates in 
the functional integral associated with the centre of mass coordinates. The remaining 
functional integral Z,, reflects the contribution of the relative coordinates; we have 
defined y” y l J 2  and c ( u )  = V(J2u),  while the boundary conditions require that 
j ( 0 )  = f ( r )  = 0. This functional integral may be evaluated by transfer operator methods 
similar to those used by Abraham (1983), who treats the analogous solid-on-solid 
problem; we summarise this argument in the appendix. Here we give a simple argument 
which serves to capture the result of the complete analysis, and illuminate it somewhat. 

Let us introduce a restricted single-string configurational weight 

(3.20) 
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where the functional integral j, extends only over those configurations which reach 
beyond a line f (x) = J (i.e. configurations for which f ( x )  > y’ for some x). Clearly 

(3.21a) 

(to which regime this 

(3.21b) 

since the configurational integral over the relative coordinates in Z,, includes (in this 
limit) only configurations which do not reach beyond the line f ( x )  = J. Now, rather 
generally we anticipate that Zls(r, 9) will have the form 

Z,s(r, J =  0) = Z d r )  
while, in the limit of sufficiently strong repulsive potentials 
argument is restricted), one must have 

z 2 R ( r 9  Y’) = z lS (r ,  y’ = O) - zlS(r, Y”) 

ZI s( r, J )  = exp{ - rGo(y’/ r )  -In r * GI ( J /  r )  + O( r o ) }  (3.22) 

or, in view of (3.21a), 

z l S ( r ,  y) = Zl5(r) exp{ - r[GO(?/ r ,  - (3.23) 

Now the product rGo( J /  r )  is simply the (dimensionless) free energy of the interface 
constrained by the requirement that f ( x )  > J ,  for some x. Thus we expect that 

(3.24) 

where Lmin( r, J )  is the minimum interfacial length consistent with the constraints. 
Clearly 

(3.25) 

- I n  r [ G l ( f /  r ,  - 

rGo( J /  r )  = g L n i n (  r, J )  

Lmin(r, J )  = 2[(r/212 +J2]”2 = r + 2 ~ ’ / r  + ~ ( y ’ ~ / ~ ~ )  
whence 

Z, s ( r , J )  =Z1s(r) exP(-262/ r ) [ l  +O(l / r2)1 (3.26) 

where in the last step we have used the fact that the leading J dependence of the 
function GI must be at least of order jL. Combining equations (3.21) and (3.26) we find 

z2 R ( r, J )  = ZI S ( r )  ( - exp ( - 2 ay2/ r )  

z= (2aJ2/r)Z15(r) (3.27) 

in the regime aJ2 << r which will be of importance. This result is essentially that obtained 
by Camp and Fisher (1972), using the method of ‘images’, as the generalisation of 
Ornstein-Zernike theory to the description of correlations in the presence of an 
absorbing boundary. Now, recalling (3.19a) we find 

&(r ,  y )  z= ( c y 2 / r ) Z ; d r ) .  (3.28 a )  

It is not hard to generalise the analysis to the situation typical of the configurations 
alluded to in figure l (b )  where the separations of the ends of the string are different, 
y l  and y 2  say. The result (derived by transfer matrix in the appendix) is simply 

(3.28b) 

The form of the two-site overlap probability now follows readily as the integral 

&s(r ,  Y l ,  Y z )  = (aYlYz/‘)Z:s(r) 
in the limit in which the y variables are of the order of 6 or less. 

over all configurations of the type depicted in figure l ( b ) :  

(3.29) 
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The equivalence should hold to within r-independent quantities dependent upon the 
measures of the various functional integrals we have calculated, and the measures of 
the y-integrals themselves. The two single-string partition functions reflect the configur- 
ational weight of the end strings. It is clear that their effect is to cut off the integrand 
in (3.29) at values of y, and y, of the order of 6, and thus within the range in which 
the small y ,  and y ,  expansion leading to equation (3.286) is valid. Physically, then, 
the typical ‘width’ of the droplets concerned, in the vicinity of the end points is 
controlled by the interfacial energies of the ‘end’ strings rather than the energies of 
the two main ( -  r-lengthed) strings. The essential structure of the two-site overlap 
probability then follows as (cf equations 3.17 and 3.286) 

(3.30) 

where we have fed in the implications of (3.10). As one would hope, in the light of 
equation (3.5u), the r-dependent prefactor is in accord with the exactly established 
behaviour of the correlation function of the nearest-neighbour lattice Ising model for 
T <  T, (Wu 1966). Its origins, and its generality, are exposed by the arguments by 
which it has been established here, as we now finally turn to discuss. 

j&,( r /  6 j - r-, e-r/c 

4. Discussion and summary 

In this concluding section we shall review the results we have obtained, commenting 
on the insights which they off er, on their trustworthiness, on their implications in a 
number of contexts and on the possibilities for future extensions. 

Our study of the short distance behaviour of the correlation function (0 2 )  represents 
a straightforward extension of the nested nearly spherical droplet theory developed in 
I. As such it is formally justifiable only in d = 1 + E  dimensions; however, in view of 
the smallness of the known value of P / 2 v  (corresponding to i+bo, the ‘small parameter’ 
of the theory) in d = 2 ,  it seems reasonable to expect that the underlying picture is 
substantially correct in two dimensions. In any event the wholly unsurprising identifica- 
tion (2.1 1 b )  shows that 7, like p, has an essential singularity in the e + 0 limit. 

By contrast our study of the large distance behaviour of the correlation function 
(§ 3) transcends the ( 1  +&)-dimensional framework of our original droplet theory in 
a number of respects and, in the process, seems to gain in richness at least as much 
as it loses in rigour. The key result underpinning and motivating this, the bulk of our 
study, is equation ( 3 . 5 ~ ) .  Although this result has been derived within the context of 
the dilutely nested droplet theory it seems quite likely that it is actually rather more 
generally valid. In exploring this proposition we must deal separately with the r- 
dependence implied by (3.5u), the residual &dependence embodied in the order 
parameter prefactor, and the nature of the implied q-dependence. 

That the spatial dependence of the two-point correlation function should reflect 
the probability of finding a closed interface surrounding the two points is plausible 
on at lease two counts. Firstly, as noted by Fisher (1984), it is consistent with the 
picture suggested by low-temperature series expansion studies (Tarko and Fisher 1975) 
in which graphs contributing to the correlation function are found to involve connected 
clusters of spins (overturned with respect to the ground state) embracing the two sites. 
Secondly, there is clearly considerable circumstantial support for the spatial depen- 
dence implied by ( 3 . 5 ~ )  to be found in the successes which issue from this prediction. 
It leads directly to the Widom relation ( I .  1 )  in general dimension d > 2 ,  to the specific 
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and simple form this relationship assumes in d = 2 (equation 1.2), and even to the 
correct r-dependent prefactor in d = 2, which we shall be discussing at length below. 

The question of the reliability of the [-dependent prefactor suggested by ( 3 . 5 ~ )  is 
more subtle. Certainly, in as much as it bears out scaling predictions the actual power 
of [ (or reduced temperature) embodied in the order parameter prefactor is indeed 
generally correct. However the predictive power claimed by equation ( 3 . 5 ~ )  is, possibly, 
greater than this, since it purports to capture the overall scale of the correlation function. 
Of course the scale of the ‘prefactor’ in ( 3 . 5 ~ )  is meaningful only to the extent that 
the overall scale of the two-site overlap probability may itself be assigned a precise 
significance. With one caveat this does indeed appear to be possible in principle. It 
would, however, be hard in practice since it would involve careful consideration of 
the measures of the functional integrals determining this probability; although it seems 
likely that these measures can be assigned unambiguous significance within the 
framework of dimensional regularisation (cf I appendix 1 )  it is unlikely that the results 
would be trustworthy when extrapolated to interesting dimensions. Even in principle, 
however, this procedure would appear to be meaningful only to the extent that one 
may treat the interface of the relevant droplet as effectively isolated; this is of course, 
strictly, the precondition for the validity of equation ( 3 . 5 ~ ) .  Thus one is still left with 
the possibility that equation ( 3 . 5 ~ )  is too naive in its implications that critical fluctu- 
ations merely produce essentially separate renormalisations of the bulk (ordering 
coordinate scale) and surface (interfacial tension) properties of the droplets. There 
are, however, circumstances in which it is now known that such a simple picture is in 
fact appropriate. Specifically, studies of the essential singularity at the coexistence 
curve displayed in series expansions for the free energy in the d = 2 Ising model (Baker 
and Kim 1980) have shown that the results can be understood quantitatively in terms 
of a critical droplet with bulk and surface renormalisations of the type suggested above 
(Harris 1984, Sim and Bruce 1984). Certainly, the picture is intrinsically more plausible 
in the context of the critical droplet, since the latter is essentially a sphere with a radius 
which is large compared to the coherence length [ of the fluctuations within the 
boundaries. By contrast the anisotropic droplets which, it is envisaged, dominate the 
two-site overlap probability do not in general have dimensions large on the scale of 
5. However in d = 2, the typical transverse dimension ( - r”2[1’2) is large compared 
to 5 (in the r >> [ regime of interest), enhancing the plausibility of the picture proposed 
here in the d = 2 case at least. 

We turn, now, to the interrelated question of the q-dependence of the correlation 
function suggested by equation ( 3 . 5 ~ ) .  Clearly the inference is that, apart from the 
explicit factor of q, the entire q-dependence of the correlation function (at large 
distances) can be subsumed into the q-dependence of the order parameter and the 
q-dependence of the correlation length, or equivalentlv the surface tension. Strictly 
(cf Schmittmann and Bruce 1984) the isolated interface theory underpinning (3.5a) 
does not predict any q-dependence in the correlation length, presumably because it 
fails to capture the dressing of a nominally isolated interface separating two phases 
by droplets of one of the q - 2 other phases, as observed in Monte Carlo studies (Selke 
and Pesch 1982). However, the theory also fails to incorporate overhang effects which 
must also in general contribute to interfacial properties. Thus the suggestion that the 
q-dependence implied by equation ( 3 . 5 ~ )  should in fact be taken at face value does 
not appear to be a significantly stronger proposition than that already made: in effect 
the philosophy is that the structure of the equation is trustworthy even if the theory 
is unable to handle the details of the interfacial properties correctly. Nevertheless it 
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is in the context of the implicit q-dependence that the ‘strong’ view of equation ( 3 . 5 ~ )  
might be put most directly to test. Specifically, in the q +  1 limit the pair correlation 
function defined in equation (2.4) gives the probability that two sites a distance r apart 
belong to the same cluster (finite or infinite) in the (bond) percolation problem, the 
order parameter Q then giving the probability that a site belongs to the infinite cluster. 
Equation ( 3 . 5 ~ )  taken in conjunction with the known form of the ordered phase 
correlation function for the d = 2 Ising ( q  = 2 )  problem would then offer a quite explicit 
prediction for the behaviour of this, the percolation pair-connectedness function. 
Furthermore, if the relationship (1.2) does indeed hold for general q there follows 
immediately a unique link between the length 6 which sets the scale on which the pair 
connectedness function decays and the typical cluster size setting the scale on which 
the cluster number distribution decays (Schmittmann and Bruce 1984). 

Next, let us review the specific d = 2  realisation of equation (3.5a), explored in 
9 3.3. As we have already emphasised, neither the results nor the basic philosophy of 
these calculations is new. Abraham (1983) has presented a very similar analysis of 
the d = 2 correlation function: he constructs the relevant droplets (‘bubbles’) from two 
solid-on-solid interfaces, treated with transfer matrix methods similar to those used in 
the appendix. Fisher (1984) shows that the essential structure ofthe correlation function 
can be understood by modelling the two relevant interfaces with the paths traversed 
by two walkers at large on a ( 1  + 1)-dimensional lattice, moving uniformly in time (the 
direction of the droplet axis) but randomly in space, and destined to annihilate on 
intersection. In any event the picture which emerges from these various studies offers 
a simple and compelling interpretation of the behaviour of the d = 2 Ising correlation 
function. The relationship (1.2) is a simple reflection of the fact that it requires two 
interfaces of length r to pro’duce the (‘minimal’) droplet contributing to the correlation 
function. The anomalous r-’ prefactor originates in the entropy-driven wandering of 
two interfaces which cannot cross. 

In fact, the origins of the r-dependent prefactor in g ( r ,  6) and the sense in which 
it is ‘anomalous’ merit closer scrutiny. To motivate this final discussion topic it is 
relevant to record at this point that this prefactor actually plays a key role in determining 
the nature of the wavevector dependent susceptibility x ( k ,  5 )  (the Fourier transform 
of g ( r ,  t)), which is measurable by inelastic neutron or x-ray scattering studies. In 
particular, the form of the prefactor in the direct space correlation function (at large 
r )  determines the singularity of the Fourier transform lying closest to the origin in the 
complex wavevector plane. Thus, while an Omstein-Zernike ( r - ( d - ’ ) ’ 2 )  prefactor 
manifests itself in a simple two-pole structure in ,y( k, 0, the I-’ prefactor appropriate 
in d = 2 for T < T, implies two square root branch points. Combining this information 
with a knowledge of the large-k behaviour of x( k, t), in d = 2, Tarko and Fisher (1975) 
devised approximants for x( k, 6) over the entire scaling regime. Subsequently Tracy 
and McCoy (1975) computed the exact form of the function x ( k ,  6) for the d = 2 Ising 
model; the more refined of the two Tarko-Fisher approximants was found to reproduce 
the exact behaviour of the scaling function to within 3%. Recently Cowley er a1 (1984) 
have studied the inelastic neutron scattering cross section in the quasi-two-dimensional 
antiferromagnet K,CoF,. The results obtained in the ordered phase can be very 
satisfactorily parameterised with the (latter) Tarko-Fisher form; attempts to para- 
meterise the results with the Omstein-Zernike scaling function lead to marked incon- 
sistencies. The moral i’s clear: the form of the subdominant power law prefactor in 
the large distance behaviour of g( r, 6) has distinctive observable consequences for the 
form of x ( k ,  6 ) .  
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Pursuing, then, the physics of this prefactor we consider first the high-temperature 
phase. Here, the Omstein-Zemike prefactor (which appears to be universally appropri- 
ate for T >  T,) can be understood within a string framework (0 3.3.2; Stack and Stone 
1981): essentially, each of the d - 1 zero modes of the string (fluctuating modes costing 
zero energy, modulo boundary effects) contributes a factor of r-”* to the prefactor. 
In the low-temperature phase the physics of the correlation function is quite different: 
the two-point function is controlled not by strings connecting the two points but by 
droplets embracing the two points. It is tempting to anticipate that the correlation 
function prefactor will then be controlled by the zero modes of the relevant droplets. 
However, in contrast to the situation above the critical point, zero-mode counting 
alone is insufficient to prescribe the prefactor completely. Certainly, in the d = 2 case 
studied here one factor of r-”* may be traced to each of the two zero modes associated 
with the translation (centre of mass motion) and the breathing (relative motion) of 
the contributing anisotropic droplets. However the prefactor contains a further power 
of r-I (the ‘death factor’ discussed by Fisher (1984)) which originates in the fact that 
the only configurations which actually contribute are those in which the two wildly 
wandering interfaces do not meet. It seems clear that the latter effect is a pathology 
peculiar to the d = 2 case (and that the prefactor is ‘anomalous’ in this sense): the 
large amplitude wandering of the d = 2  interfaces is a reflection of the relatively low 
interfacial energy cost of such fluctuations. In d = 3 the typical relevant droplet is (cf 
our discussion in 0 3.2) likely to be essentially cylindrical with a radius of the order 
of 6, the wandering of the surface being strongly controlled by the energy of the 
‘cylindrical’ portion of the interface. In this situation there are three relevant modes 
which are not mechanically stable-two associated with translation and one with 
breathing (radial distortion) of the droplet. Moreover, while there is likely to be 
nothing to correspond to the two-dimensional ‘death factor’, it does appear that there 
will be additional powers of r reflecting the way in which the sum over all such 
configurations is cut off. (In d = 2 the cutoff is controlled simply by the configurational 
weight of the ‘end’ strings and is r-independent; the d = 2 case is ‘anomalous’ in this 
sense also.) 

Clearly, the d = 3 problem requires rather careful consideration. Certainly, low- 
temperature transfer-matrix studies (Fisher and Camp 1971, Camp 1973) suggest that 
an Ornstein-Zernike prefactor should be appropriate in the ordered phase for all d 3 3. 
However these same studies, if taken at face value, would also indicate that the failure 
of the Ornstein-Zernike theory in the d = 2 case is a pathology peculiar to the 
nearest-neighbour lattice Ising model (and that the Ornstein-Zernike form is restored, 
for example, by next-nearest-neighbour interactions). With the perspectives of the 
present work and that of Abraham (1983) and Fisher (1984) it now seems clear that 
(as was speculated by Fisher and Camp (1971)) this is actually not true: the failure 
of the Ornstein-Zernike theory for d = 2, T < T, is, it would appear, a universal feature 
of Ising (scalar order parameter) systems. Accordingly it seems that the available 
evidence does not rule out the possibility that the failure of the Omstein-Zernike 
theory is actually generic to ordered phases. 
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Appendix. Transfer operator treatment of the two-string partition function 

We outline here how one may use transfer operator methods to treat the configurational 
integral (3.19b). In fact we shall consider the rather more general situation in which 
a string is pinned so that iis two ends lie, respectively, distances and Fz from a 
repulsive potential barrier K The required functional integral is then 

where the boundary conditions are 

f ( 0 )  = $1 f ( r )  = F 2 .  ('42) 

Discretising the problem and adopting a measure consistent with (3.14) we find 

z2R(r,Fl,F2)=a,"-l' 
n = l  

The transfer operator method then shows that 

where hk and 4 k  are eigenvalues and eigenfunctions of a transfer integral equation 
which (in the ao+O limit) may be recast in the pseudo-Schrodinger form (see e.g. 
Scalapino et a1 1972) 

with 
&k = ~ l n ( 2 ~ a o / u o ) - l n  hk. 

The behaviour of (A4) has been investigated for a number of different forms of repulsive 
potential ?; the essential results are independent of the form. Here we choose simply 

Q = w8( U). (A7) 

One then readily finds 

x [  1 +( 1 +?) cos[k(F, - F 2 ) ] - ~ s i n [ k ( F l  2 wuo +F2)l 

The single free-string result is obtained by setting F, = j 2  = w = 0 yielding (cf (3.17) 
with d = 2 )  

where we have adopted the same licence with respect to the fluctuation renormalisation 
of the string tension as in the text; the specific details of that renormalisation differ 

Z l s ( r )  = ( V U $ ~ T ~ ) " ~  e-"' (A91 
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from that indicated in equation (3.17), as one would expect in view of the differences 
of detail in the short wavelength behaviour inherent in the two calculations. 

In the limit of large r (or, equivalently, in the limit of a large potential strength 
w) where w2uor >> 1 (AS) yields 

which coincides (to within fluctuation renormalisations of u) with equation (3.27) of 
the text. 

Finally, in the limit in which the y’ variables are of the order of 5 or less we find 

z2R(r7 yli y2) =z (2gylF2)/r)ZlS(r) 

Z 2 S ( L  Y I ,  Y d  = ((+Y,Y*/r)Z:s(r) 

(A121 

(A13) 

which implies for the generalisation of equation ( 3 . 1 9 ~ )  

thus recovering the result quoted in equation (3.286). 

Note added inprooJ In a recent paper Abraham er a /  (1984) have shown that a theory of the three-dimensional 
ordered phase correlation function. based upon the statistical mechanics of random cylinders, does yield 
Ornstein-Zernike behaviour at low enough temperatures. 
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